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A quadratic filtration law which generalizes the Darcy and Brinkman laws 
is considered. 

The Darcy law 

p , i = - -  ~ ui (1) 

is usually used for macroscopic description of slow flows of viscous liquids and gases 
through porous media. 

Equation (i) agrees well with experiment for flows which change slowly over space, at 
moderate pressure heads and filtration velocities. But when these conditions are not satis- 
fied deviations from the Darcy law are observed. This can occur, for example, in face 
regions of wells with anomalously high stratal pressure or in filtration of a liquid (gas) 
through thin membranes (at significant pressure heads). Another question regarding the 
applicability of Eq. (i) arises in describing the contact between a liquid-filled porous 
medium and a pure liquid. Since the Darcy equation does not contain derivatives of the velo- 
city with respect to the coordinates (i.e., is a zeroth order equation), and the Navier- 
Stokes equations (second-order equations) are usually used to describe microflows of liquid 
within the pore space and flows of the pure liquid outside the porous medium, complications 
can occur in specifying the boundary conditions on the interphase boundary. Similar prob- 
lems also occur in consideration of filtration of multiphase or multicomponent liquids. 

To eliminate these shortcomings and achieve agreement with experiment various modifica- 
tions of the Darcy law have been proposed. Thus, to describe filtration at significant 
velocities and pressure heads nonlinear filtration laws of the form 

p,~ ~ u~g /Eulpd ) ~.,, ,m_ , 

have been used (see, for example, [i]), where d is the characteristic linear dimension of 
the micromotion: lulpd/p = Ref is the Reynolds number of the filtration micromotion; g is a 
dimensionless "influence" function. 
we obtain the often used quadratic 

where it is assumed that d ~ v~ [i]. 

Expanding g in a series in u up to the second power, 

r', u~ 1 ~  p lul u~, (2) 

For the case where shear stresses in the filtering liquid cannot be neglected, Brinkman 
proposed a filtration law (for an incompressible liquid) in the form [2] 

P,~ = - -  ui  + ~ ' u i , i i  , (3) 'R 

where the parameter p' has the sense of an effective liquid viscosity in the porous medium, 
and generally does not coincide with p. Equation (3) is similar to the equation of motion 
(in the Stokes approximation with renormalized viscosity ~') of a conventional linear- 
viscous liquid, on which additional mass forces fi = - ~'ui, ~' = ~'/~ act. Such a liquid 
is sometimes called a "Brinkman liquid" [3]. 

Equation (3) contains second derivatives of the velocity with respect to coordinates, 
and therefore eliminates the complications involving boundary conditions referred to above. 
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Fig. i. Dimensionless pressure 
p vs dimensionless distance x 
(Q = 0.01; a = 20; dash-dot 
line, Darcy law): I) b = i0; 2) 
i000; 3) 1500; 4) 1800; 5) 2000; 
6) 3 0 0 0 .  

If S is the surface separating the porous medium and the pure liquid, then the boundary 
conditions on S have the usual form [3]: 

[niud = O, [t~u~] = O, 

where n i and t i a r e  u n i t  v e c t o r s  normal  and t a n g e n t  t o  S, and t h e  s q u a r e  b r a c k e t s  i n d i c a t e  
a s t e p  in  t h e  q u a n t i t y  c o n t a i n e d  t h e r e i n  upon t r a n s i t i o n  t h r o u g h  t h e  s u r f a c e  S. In  a d d i t i o n  
the conditions 

[~j t~nd = 0, [~jn~nd = 0, 

must  be s a t i s f i e d  on S, where o i j  = - PSi j  + U ' ( u i , j  + u j , i )  i s  t h e  " v i s c o u s  s t r e s s "  t e n s o r  
for a Brinkman liquid. 

We obtain a filtration law having the properties of Eqs. (2) and (3). 

We will limit our examination to isotropic, homogeneous, and nondeforming porous media, 
and for simplicity we will consider steady state flows. We will use the approach proposed 
in [3], but will consider the liquid compressible. 

We will consider the steady-state Navier--Stokes equation (which we assume describes 
microflows of the liquid within the pore space) 

pu~.~,i + p,~ = ( ~  + ~ ui,j~ + ~ui,H �9 ( 4 )  

We take the Fourier transform of Eq (4) for the pore space only, obtaining 

R~ (k) = - -  ~ + - ~ -  ~ k~kjuj (k) - -  ~kjk~u~ (k) - -  G~ [k; u], ( 5 )  

where Ri(k) is the Fourier transform of the left Side of Eq. (4) and G i [k, uj is an opera- 
tor which appears as a result of considering conditions at infinity and the boundary con- 
ditions on the surface of the pores. We will limit ourselves to the case where the operator 
G i is quadratic in u, i.e., 

G~ [k; u] = At [k; u] + B~ [k; u, u] = ~ Aij (k, k') uj (k') dk' + .I; Bijz (k, k', k") uj (k') u, (k") dk'dk". (6) 

Since the medium is assumed homogeneous, then the operators A i and B i must be invariant 
relative to shear, consequently [4]: 

Ai~(k, k ' ) ~  .21i~(k) 8 ( k - - k '  ), B~jz(k, k', k")=Bij~(k' ,  k") 5(k--k ' --  k"), (7) 

while Bijs must satisfy symmetry conditions for the simultaneous replacement j +-+ s k' ~-+ k". 

We will assume that Aij and Bij~ are polynomials in k of no higher than second order 
(this corresponds to the situation where in the defining filtration equations in x-space 
there are no derivatives of order higher than second). Considering the isotropic nature of 
the porous medium, we may write Aij , Bij ~ in the form 

+ T  
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Fig. 2. Quantity Qcr vs bcr (a = 20). 

1 

I 
0 0,03 a 

I 

I 
i 

I I 
0,01 0,~ 

Fig. 3 

Fig._3. Indicator curves Ap % Q for various values of parameter b (~- 
= p(x = i) - p(x = 0), a = 20): i) b = i0; 2) i00; 3) i000; 4) 2000; 
dash-dot line, Darcy law. 

Using Eqs. (5)-(8) and an inverse Fourier transform, from Eq. (5) we obtain 

( i) 
= uj, j~ + ~ ' u ~ , u  - -  aou~ - -  fi~ (ujuj),~ - -  fi~ (u i , i )  u .  ( 9 )  

p'ujui,i § p,~ ~' + T ~' 
where p' = P + 8a, ~' = ~ -- ~i, ~' = n + 1/3 al + a2. 

If in Eq. (9) we neglect the second derivatives with respect to coordinates and the 
squares of the velocities, we obtain the conventional Darcy law. Considering the second 
derivatives, but as before neglecting the squares of the velocities, we arrive at a Brink- 
man type filtration equation with renormalized viscosity coefficients. Finally, omitting 
from Eq. (9) terms containing second derivatives, we obtain filtration equations with qua- 
dratic corrections to the Darcy law: 

p'U~U~, j + p. ~ = - - (So + ~2uj, j ) u ~ -  Pl (uj@. i. (10)  

I n  c o n t r a s t  t o  Eq. (2 )  t h e  d e p e n d e n c e  on u in  t h e  r i g h t  s i d e  o f  Eq. (10)  i s  a n a l y t i c .  

U n f o r t u n a t e l y  t h e  e x t r e m e  c o m p l e x i t y  o f  t h e  p o r e  s p a c e  g e o m e t r y  p r o d u c e s  a l m o s t  i n -  
s u r m o u n t a b l e  d i f f i c u l t i e s  f o r  an e x a c t  a n a l y t i c a l  c a l c u l a t i o n  o f  t h e  c o e f f i c i e n t s  a i and ~ i ,  
and therefore they must be determined from experiment. It is possible to obtain analytic 
results only for rarefied periodic structures or "weak solutions." In [3] the question of 
calculation of the renormalized viscosity p' for Eq. (3) was considered. It developed that 
for suspensions ~' > ~, while for media of high porosity (m ~ i) p' < ~, while the para- 
meter n' as a rule, is greater thann [5]. 

As an example of application of the modified Darcy law, we will consider steady state 
one-dimensional filtration of an ideal gas. We take the filtration law in the form of Eq. 
(i0) and supplement it with equations of continuity and state: 

p , x = - - a o u - - ~ u , ~ u - - p u u  ~ ,  (pu),~-- 0, p=dp,  
where  ~ = 2~l  + ~2 + ga;  c i s  t h e  s p e e d  o f  sound  in  t h e  g a s .  D e n o t i n g  pu = q  (where  q i s  t h e  
flow rate), we find that p satisfies the equation 

( p2 ~ _~q2c~ p.~ --q~c ~ p'x -~oC~q. (11) 
\ 7 2  ,~ p~ p 

E q u a t i o n  (11 )  w i t h  t h e  b o u n d a r y  c o n d i t i o n  p ( x  0) = P0 i s  e a s i l y  i n t e g r a t e d .  I n  d i m e n s i o n -  
l e s s  notation its solution has the form 

1--(~--l)+Q2b( 1 2  P- - . l ) - - Q 2 1 n p = a Q ( x - - , ) ,  (12)  

whe re  Q = q c / p 0 ,  p = P / P 0 ,  ~ = x / x 0 ,  b = ~ c 2 / P 0 ,  a = a 0 c x 0 / p 0 .  I n  t h i s  c a s e  t h e  c l a s s i c a l  
D a r c y  l aw,  Eq. ( 1 ) ,  l e a d s  t o  a s o l u t i o n  
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] (>--I)= aQ(7-]) (13) 
2 

In Fig. 1 the dash-dot line shows the solution of Eq. (13), while the solid lines corres- 
pond to Eq. (12) for fixed a, Q and various (increasing from bottom to top) values of 
the parameter b, the dashed segments indicating "nonphysical" branches of the p(x) curves. 

Let us assume that the problem under consideration models influx of gas into a "well" 
located at the point x = 0. It follows from Fig. 1 that operation of such a well is not 
possible at all b values. For a given Q there exists a bcr, such that at b > bcr filtration 
ceases. Since we are considering steady state problems, this simply means that for a given 
Q a steady state filtration process is impossible if b > bcr(Q). Figure 2 shows the depen- 
dence of bcr on Q. The range of parameters in which steady state filtration is possible is 
shaded. 

Figure 3 shows indica_tor curves of the "well" considered, giving the dependence of flow 
rate Q on pressure head Ap = p(x = i) - p(x = 0) for fixed a and various b. The dash-dot 
line shows the corresponding dependence for the Darcy law. The characteristic bend of the 
indicator curves in the figure has been observed in practice and the experiments of [6], and 
has usually been related to deformability of the porous media (petroleum and gas collectors). 
The example presented shows that such behavior of the dependence of Ap on Q is also possible 
in nondeforming media, if the filtration law deviates from the Darcy law. 

NOTATION 

p, pressure; ~, shear viscosity of liquid (gas); ~, bulk viscosity; ~, permeability; u, 
flow velocity; m, porosity; p, liquid (gas) density; fi, mass forces; S, surface separating 
liquid and porous medium; c, speed of sound; o~, viscous stress tensor; G~, A~, B~, oper- 
ators with respect to u; Aij, Bijs Aij, B~j~, kgrnels and regularized kernels ~f,operators 
Ai, Bi; ~i, $i, ~, parameters; ~i, k i, k i, Fourier transform parameters; p , U , q , re- 
normalized density, shear, and bulk viscosityl q~ flow rate; x, distance; P0, initial pres- 
sure at point x0; a, b, positive parameters; p, x, Q, dimensionless p, x, and q; bcr, criti- 
cal value of parameter b; Ap, dimensionless pressure head. 
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